Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 662
Filtrar
1.
Vet Parasitol Reg Stud Reports ; 50: 101006, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38644035

RESUMO

Vector-borne diseases (VBDs) affecting dromedary camels (Camelus dromedarius) have considerable importance in the United Arab Emirates (UAE) because of the consequences associated with production decline and economic losses. Our study aimed to determine the prevalence of selected VBDs in camels in the UAE and identify risk factors. This research is currently affected by the low number of epidemiological molecular surveys addressing this issue. Blood samples were obtained from 425 dromedary camels from different locations across the UAE. Whole genomic DNA was isolated, and PCR screening was done to detect piroplasmids (Babesia/Theileria spp.), Trypanosoma spp., and Anaplasmataceae spp. (Anaplasma, Ehrlichia, Neorickettsia and Wolbachia spp.). Amplicons were sequenced, and phylogenetic trees were constructed. Trypanosoma sequences were identified as T. brucei evansi, whereas Anaplasmataceae sequences were identified as A. platys-like. All camels were negative for Babesia/Theileria spp. (0%); however, 18 camels were positive for T. b. evansi (4%) and 52 were positive for A. platys-like (12%). Mixed infection with T. b. evansi and A. platys-like was found in one camel. Statistical analyses revealed that camels with a brown coat colour were significantly more prone to acquire the A. platys-like strain compared with those having a clearer coat. A similar finding was observed when comparing urban moving camels with desert indoor and urban indoor camels. Continuous disease surveillance is required to ensure and maintain the good health status of the camels in the UAE. Nonetheless, the risk of disease outbreak remains if the misuse of drugs continues.


Assuntos
Camelus , Doenças Transmitidas por Vetores , Animais , Emirados Árabes Unidos/epidemiologia , Camelus/parasitologia , Prevalência , Doenças Transmitidas por Vetores/epidemiologia , Doenças Transmitidas por Vetores/parasitologia , Doenças Transmitidas por Vetores/veterinária , Doenças Transmitidas por Vetores/microbiologia , Feminino , Masculino , Babesia/isolamento & purificação , Babesia/genética , Filogenia , Trypanosoma/isolamento & purificação , Trypanosoma/genética , Trypanosoma/classificação , Anaplasmataceae/isolamento & purificação , Anaplasmataceae/genética , Babesiose/epidemiologia , Babesiose/parasitologia , Fatores de Risco
2.
J Insect Sci ; 22(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35134189

RESUMO

Bagrada hilaris (Burmeister) is an invasive pest of economically important crops in the United States. During physiological investigations of B. hilaris, a flagellated protozoan was discovered in the alimentary canal of many specimens. This manuscript characterizes the morphology and molecular identification of the trypanosomatid, which appears similar to trypanosomatids identified in other stink bug species. It has been identified as a species in the Blastocrithidia genus based on morphological characteristics and molecular analyses.


Assuntos
Hemípteros , Trypanosoma , Animais , Hemípteros/parasitologia , Trypanosoma/classificação
3.
BMC Vet Res ; 18(1): 45, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042521

RESUMO

BACKGROUND: Trypanosoma evansi is the leading infectious Trypanosoma spp. in camels (Camelus dromedarius) present in the Kingdom of Saudi Arabia (KSA) that could lead to extensive economic losses. The present study was aimed to assess the prevalence rate of T. evansi in Taif governorate, Makkah province, KSA using parasitological and molecular evaluations, and analyze their genetic relationship targeting internal transcribed spacer 1 (ITS1) and variable surface glycoprotein (VSG) genes. For evaluation, we have used 102 blood samples of camels obtained from three different regions in Taif. RESULTS: Results show a considerable prevalence rate of trypanosomosis 2/102 (2.0%) according to Giemsa-stained buffy coat smear, and 16/102 (15.7%) according to touchdown PCR. T. evansi (n = 10/102, 9.8%) was the main infectious species found in camels then T. vivax (n = 3/102, 2.9%). Mixed infections were detected in three camels with T. evansi, T. vivax, and T. congolense (n = 3/102, 2.9%). Regarding gender, the results indicate that female camels (11/66, 16.7%) show higher prevalence of Trypanosoma than males (5/36, 13.9%). Sequencing and phylogenetic analyses of ITS1 and VSG showed their relationships with T. evansi in other hosts from different countries. CONCLUSIONS: In our peer knowledge, it is the first time to report a research-based prevalence of trypanosomosis in the camels of Taif governorate, Makkah province, KSA.


Assuntos
Camelus/parasitologia , Trypanosoma , Tripanossomíase , Animais , Feminino , Masculino , Filogenia , Arábia Saudita , Trypanosoma/classificação , Trypanosoma/genética , Tripanossomíase/epidemiologia , Tripanossomíase/veterinária
4.
PLoS Negl Trop Dis ; 15(12): e0009985, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34919562

RESUMO

African trypanosomosis, a parasitic disease caused by protozoan parasites transmitted by tsetse flies, affects both humans and animals in sub-Saharan Africa. While the human form (HAT) is now limited to foci, the animal form (AAT) is widespread and affects the majority of sub-Saharan African countries, and constitutes a real obstacle to the development of animal breeding. The control of AAT is hampered by a lack of standardized and easy-to used diagnosis tools. This study aimed to evaluate the diagnostic potential of TbLysoPLA and TbGK proteins from Trypanosoma brucei brucei for AAT serodiagnosis in indirect ELISA using experimental and field sera, individually, in combination, and associated with the BiP C-terminal domain (C25) from T. congolense. These novel proteins were characterized in silico, and their sequence analysis showed strong identities with their orthologs in other trypanosomes (more than 60% for TbLysoPLA and more than 82% for TbGK). TbLysoPLA displays a low homology with cattle (<35%) and Piroplasma (<15%). However, TbGK shares more than 58% with cattle and between 45-55% with Piroplasma. We could identify seven predicted epitopes on TbLysoPLA sequence and 14 potential epitopes on TbGK. Both proteins were recombinantly expressed in Escherichia coli. Their diagnostic potential was evaluated by ELISA with sera from cattle experimentally infected with T. congolense and with T.b. brucei, sera from cattle naturally infected with T. congolense, T. vivax and T.b. brucei. Both proteins used separately had poor diagnostic performance. However, used together with the BiP protein, they showed 60% of sensitivity and between 87-96% of specificity, comparable to reference ELISA tests. In conclusion, we showed that the performance of the protein combinations is much better than the proteins tested individually for the diagnosis of AAT.


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Glicerol Quinase/sangue , Lisofosfolipase/sangue , Proteínas de Protozoários/sangue , Testes Sorológicos/métodos , Trypanosoma/imunologia , Tripanossomíase Bovina/diagnóstico , Animais , Bovinos , Glicerol Quinase/genética , Glicerol Quinase/imunologia , Lisofosfolipase/genética , Lisofosfolipase/imunologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Trypanosoma/classificação , Trypanosoma/enzimologia , Trypanosoma/genética , Tripanossomíase Bovina/sangue , Tripanossomíase Bovina/parasitologia
5.
PLoS Negl Trop Dis ; 15(12): e0009929, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34910728

RESUMO

BACKGROUND: African Trypanosomiases threaten the life of both humans and animals. Trypanosomes are transmitted by tsetse and other biting flies. In Rwanda, the African Animal Trypanosomiasis (AAT) endemic area is mainly around the tsetse-infested Akagera National Park (NP). The study aimed to identify Trypanosoma species circulating in cattle, their genetic diversity and distribution around the Akagera NP. METHODOLOGY: A cross-sectional study was carried out in four districts, where 1,037 cattle blood samples were collected. The presence of trypanosomes was determined by microscopy, immunological rapid test VerY Diag and PCR coupled with High-Resolution Melt (HRM) analysis. A parametric test (ANOVA) was used to compare the mean Packed cell Volume (PCV) and trypanosomes occurrence. The Cohen Kappa test was used to compare the level of agreement between the diagnostic methods. FINDINGS: The overall prevalence of trypanosome infections was 5.6%, 7.1% and 18.7% by thin smear, Buffy coat technique and PCR/HRM respectively. Microscopy showed a low sensitivity while a low specificity was shown by the rapid test (VerY Diag). Trypanosoma (T.) congolense was found at a prevalence of 10.7%, T. vivax 5.2%, T. brucei brucei 2% and T. evansi 0.7% by PCR/HRM. This is the first report of T.evansi in cattle in Rwanda. The non-pathogenic T. theileri was also detected. Lower trypanosome infections were observed in Ankole x Friesian breeds than indigenous Ankole. No human-infective T. brucei rhodesiense was detected. There was no significant difference between the mean PCV of infected and non-infected animals (p>0.162). CONCLUSIONS: Our study sheds light on the species of animal infective trypanosomes around the Akagera NP, including both pathogenic and non-pathogenic trypanosomes. The PCV estimation is not always an indication of trypanosome infection and the mechanical transmission should not be overlooked. The study confirms that the area around the Akagera NP is affected by AAT, and should, therefore, be targeted by the control activities. AAT impact assessment on cattle production and information on the use of trypanocides are needed to help policymakers prioritise target areas and optimize intervention strategies. Ultimately, these studies will allow Rwanda to advance in the Progressive Control Pathway (PCP) to reduce or eliminate the burden of AAT.


Assuntos
Biodiversidade , Doenças dos Bovinos/parasitologia , Trypanosoma/isolamento & purificação , Tripanossomíase Africana/veterinária , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/transmissão , Insetos Vetores/parasitologia , Insetos Vetores/fisiologia , Parques Recreativos , Filogenia , Ruanda/epidemiologia , Trypanosoma/classificação , Trypanosoma/genética , Tripanossomíase Africana/parasitologia , Tripanossomíase Africana/transmissão , Moscas Tsé-Tsé/parasitologia , Moscas Tsé-Tsé/fisiologia
6.
Nucleic Acids Res ; 49(22): 12929-12942, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34850936

RESUMO

The pre-mRNA splicing factor PRP19 is recruited into the spliceosome after forming the PRP19/CDC5L complex in humans and the Nineteen complex in yeast. Additionally, 'PRP19-related' proteins enter the spliceosome individually or in pre-assemblies that differ in these systems. The protistan family Trypanosomatidae, which harbors parasites such as Trypanosoma brucei, diverged early during evolution from opisthokonts. While introns are rare in these organisms, spliced leader trans splicing is an obligatory step in mRNA maturation. So far, ∼70 proteins have been identified as homologs of human and yeast splicing factors. Moreover, few proteins of unknown function have recurrently co-purified with splicing proteins. Here we silenced the gene of one of these proteins, termed PRC5, and found it to be essential for cell viability and pre-mRNA splicing. Purification of PRC5 combined with sucrose gradient sedimentation revealed a complex of PRC5 with a second trypanosomatid-specific protein, PRC3, and PRP19-related proteins SYF1, SYF3 and ISY1, which we named PRP19-related complex (PRC). Importantly, PRC and the previously described PRP19 complex are distinct from each other because PRC, unlike PRP19, co-precipitates U4 snRNA, which indicates that PRC enters the spliceosome prior to PRP19 and uncovers a unique pre-organization of these proteins in trypanosomes.


Assuntos
Enzimas Reparadoras do DNA/genética , Proteínas Nucleares/genética , Proteínas de Protozoários/genética , Precursores de RNA/genética , Fatores de Processamento de RNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Trypanosoma brucei brucei/genética , Enzimas Reparadoras do DNA/metabolismo , Humanos , Modelos Biológicos , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteínas de Protozoários/metabolismo , Interferência de RNA , Precursores de RNA/metabolismo , Splicing de RNA , Fatores de Processamento de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Protozoário/genética , RNA de Protozoário/metabolismo , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Spliceossomos/genética , Spliceossomos/metabolismo , Trypanosoma/classificação , Trypanosoma/genética , Trypanosoma/metabolismo , Trypanosoma brucei brucei/metabolismo
7.
BMC Vet Res ; 17(1): 365, 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34839816

RESUMO

BACKGROUND: African trypanosomiasis, caused by protozoa of the genus Trypanosoma and transmitted by the tsetse fly, is a serious parasitic disease of humans and animals. Reliable data on the vector distribution, feeding preference and the trypanosome species they carry is pertinent to planning sustainable control strategies. METHODOLOGY: We deployed 109 biconical traps in 10 villages in two districts of northwestern Uganda to obtain information on the apparent density, trypanosome infection status and blood meal sources of tsetse flies. A subset (272) of the collected samples was analyzed for detection of trypanosomes species and sub-species using a nested PCR protocol based on primers amplifying the Internal Transcribed Spacer (ITS) region of ribosomal DNA. 34 blood-engorged adult tsetse midguts were analyzed for blood meal sources by sequencing of the mitochondrial cytochrome c oxidase 1 (COI) and cytochrome b (cytb) genes. RESULTS: We captured a total of 622 Glossina fuscipes fuscipes tsetse flies (269 males and 353 females) in the two districts with apparent density (AD) ranging from 0.6 to 3.7 flies/trap/day (FTD). 10.7% (29/272) of the flies were infected with one or more trypanosome species. Infection rate was not significantly associated with district of origin (Generalized linear model (GLM), χ2 = 0.018, P = 0.895, df = 1, n = 272) and sex of the fly (χ2 = 1.723, P = 0.189, df = 1, n = 272). However, trypanosome infection was highly significantly associated with the fly's age based on wing fray category (χ2 = 22.374, P < 0.001, df = 1, n = 272), being higher among the very old than the young tsetse. Nested PCR revealed several species of trypanosomes: T. vivax (6.62%), T. congolense (2.57%), T. brucei and T. simiae each at 0.73%. Blood meal analyses revealed five principal vertebrate hosts, namely, cattle (Bos taurus), humans (Homo sapiens), Nile monitor lizard (Varanus niloticus), African mud turtle (Pelusios chapini) and the African Savanna elephant (Loxodonta africana). CONCLUSION: We found an infection rate of 10.8% in the tsetse sampled, with all infections attributed to trypanosome species that are causative agents for AAT. However, more verification of this finding using large-scale passive and active screening of human and tsetse samples should be done. Cattle and humans appear to be the most important tsetse hosts in the region and should be considered in the design of control interventions.


Assuntos
Insetos Vetores/parasitologia , Trypanosoma/isolamento & purificação , Tripanossomíase Africana/epidemiologia , Moscas Tsé-Tsé/parasitologia , Fatores Etários , Animais , Bovinos , Elefantes , Feminino , Humanos , Lagartos , Masculino , Trypanosoma/classificação , Trypanosoma/genética , Tripanossomíase Africana/transmissão , Tripanossomíase Africana/veterinária , Tartarugas , Uganda
8.
Microbiol Spectr ; 9(2): e0065221, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34643453

RESUMO

Trypanosomatid infections are an important public health threat affecting many low-income countries across the tropics, particularly in the Americas. Trypanosomatids can infect many vertebrate, invertebrate, and plant species and play an important role as human pathogens. Among these clinically relevant pathogens are species from the genera Leishmania and Trypanosoma. Mixed trypanosomatid infections remain a largely unexplored phenomenon. Herein, we describe the application of an amplicon-based next-generation sequencing (NGS) assay to detect and identify trypanosomatid species in mammalian reservoirs, human patients, and sand fly vectors throughout regions of Leishmania endemicity. Sixty-five samples from different departments of Colombia, including two samples from Venezuela, were analyzed: 49 samples from cutaneous leishmaniasis (CL) patients, 8 from sand flies, 2 from domestic reservoirs (Canis familiaris), and 6 from wild reservoirs (Phyllostomus hastatus). DNA from each sample served to identify the presence of trypanosomatids through conventional PCR using heat shock protein 70 (HSP70) gene as the target. PCR products underwent sequencing by Sanger sequencing and NGS, and trypanosomatid species were identified by using BLASTn against a reference database built from trypanosomatid-derived HSP70 sequences. The alpha and beta diversity indexes of amplicon sequence variants were calculated for each group. The results revealed the presence of mixed infections with more than two Leishmania species in 34% of CL samples analyzed. Trypanosoma cruzi was identified in samples from wild reservoirs, as well as in sand fly vectors. Coinfection events with three different Leishmania species were identified in domestic reservoirs. These findings depose the traditional paradigm of leishmaniasis as being a single-species-driven infection and redraw the choreography of host-pathogen interaction in the context of multiparasitism. Further research is needed to decipher how coinfections may influence disease progression. This knowledge is key to developing an integrated approach for diagnosis and treatment. IMPORTANCE Traditionally, there has been a frequent, yet incorrect assumption that phlebotomine vectors, animal reservoirs, and human hosts are susceptible to Leishmania infection by a single parasite species. However, current evidence supports that these new vector-parasite-reservoir associations lend vectors and reservoirs greater permissiveness to certain Leishmania species, thus promoting the appearance of coinfection events, particularly in disease-endemic regions. The present study describes the application of an amplicon-based next-generation sequencing (NGS) assay to detect and identify trypanosomatid species in mammalian reservoirs, human patients, and sand fly vectors from regions of endemicity for leishmaniasis. This changes our understanding of the clinical course of leishmaniasis in areas of endemicity.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Leishmania/genética , Leishmania/isolamento & purificação , Trypanosoma/genética , Trypanosoma/isolamento & purificação , Animais , Cães , Proteínas de Choque Térmico HSP70/genética , Humanos , Indanos , Leishmania/classificação , Leishmaniose Cutânea/parasitologia , Masculino , Mamíferos/parasitologia , Phlebotomus , Filogenia , Reação em Cadeia da Polimerase , Psychodidae/parasitologia , Análise de Sequência , Trypanosoma/classificação , Venezuela
9.
Parasit Vectors ; 14(1): 513, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620230

RESUMO

BACKGROUND: Bovine trypanosomosis transmitted by tsetse flies is a major constraint to cattle health and productivity in all sub-Saharan countries, including Uganda. The objectives of this study were to determine the prevalence of bovine trypanosomosis and identify its associated risk factors and the species of trypanosomes associated with the disease. METHODOLOGY: A cross-sectional study was conducted around Murchison Falls National Park, Uganda from January 2020 to April 2020. Trypanosomes were detected in blood samples by PCR analysis targeting the internal transcribed spacer 1 (ITS-PCR assays), and trypanosomes in positive blood samples were sequenced. RESULTS: Of 460 blood samples collected and tested, 136 (29.6%) were positive for trypanosome infections and 324 (70.4%) were negative. The overall trypanosome prevalence was 29.6% (95% confidence interval 25.4-33.8%), attributed to three trypanosome species. Of these three species, Trypanosoma vivax was the most prevalent (n = 130, 28.3%) while the others were detected as mixed infections: T. vivax + Trypanosoma congolense (n = 2, 0.4%) and T. vivax + Trypanosoma evansi (n = 1, 0.2%). There were significant differences in trypanosome prevalence according to sex (χ2 = 62, df = 1, P < 0.05), age (χ2 = 6.28, df = 2, P = 0.0043) and cattle breed (χ2 = 10.61, df = 1, P = 0.001). CONCLUSIONS: Trypanosomosis remains a major limitation to cattle production around Murchison Falls National Park and interventions are urgently needed. In our study, the prevalence of trypanosome infections was high, with T. vivax identified as the most prevalent species. Age, sex and breed of cattle were risk factors for trypanosome infection.


Assuntos
Trypanosoma/genética , Tripanossomíase Bovina/epidemiologia , Tripanossomíase Bovina/transmissão , Moscas Tsé-Tsé/parasitologia , Animais , Bovinos/parasitologia , Estudos Transversais , DNA Intergênico/genética , Feminino , Insetos Vetores/parasitologia , Masculino , Parques Recreativos , Prevalência , Fatores de Risco , Trypanosoma/classificação , Trypanosoma/isolamento & purificação , Trypanosoma congolense/genética , Trypanosoma vivax/genética , Tripanossomíase Bovina/sangue , Uganda/epidemiologia
10.
Parasit Vectors ; 14(1): 560, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34715895

RESUMO

BACKGROUND: Trypanosomiasis is a fatal disease that threatens the economy of at least 37 countries in sub-Saharan Africa, particularly with regard to livestock farming. In this study, we investigated the prevalence of trypanosome infection in cattle, and molecularly identified the species of trypanosomes in infected cattle and the spatial distribution of trypanosome-infected herds along the Jebba axis of the River Niger. METHODS: A randomized cross-sectional study was conducted along the Jebba axis of the River Niger by screening cattle from 36 herd clusters by nested PCR using ITS-1 generic primers. Data generated were analysed using the Chi-square test at a 95% confidence interval. RESULTS: Microscopic examination revealed three infected cattle out of 398 examined, representing 0.8% prevalence. Twelve animals (3.0%) were positive by PCR. Our results showed a decline in the packed cell volume of infected animals (24.7%). The infection rates were categorized as single infection in 11/12 (91.7%) and mixed infection in 1/12 (8.3%). Animals were most frequently infected by Trypanosoma congolense (50.0%), with T. congolense Savannah being the most prevalent subspecies (71.4%). Aside from the infection rate by age (10.0%) and relative distance of animals from the River Niger (56.2%), statistical differences in every other parameter tested were based on mere probabilistic chance. Spatial data showed that the disease was prevalent among herds located less than 3 km from the River Niger. CONCLUSIONS: Six species of trypanosomes were identified in cattle herds along the Jebba axis of the River Niger, with T. congolense being the most prevalent. Age and relative distance of herds from the River Niger may be risk factors for trypanosome infection in cattle herds in this area.


Assuntos
Doenças dos Bovinos/epidemiologia , Trypanosoma/genética , Tripanossomíase/epidemiologia , Tripanossomíase/veterinária , Distribuição Animal , Animais , Bovinos/parasitologia , Doenças dos Bovinos/parasitologia , Estudos Transversais , Feminino , Masculino , Nigéria/epidemiologia , Prevalência , Rios , Trypanosoma/classificação , Tripanossomíase Africana , Moscas Tsé-Tsé/parasitologia
11.
mBio ; 12(4): e0160621, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34399629

RESUMO

The closest relative of human pathogen Leishmania, the trypanosomatid Novymonas esmeraldas, harbors a bacterial endosymbiont "Candidatus Pandoraea novymonadis." Based on genomic data, we performed a detailed characterization of the metabolic interactions of both partners. While in many respects the metabolism of N. esmeraldas resembles that of other Leishmaniinae, the endosymbiont provides the trypanosomatid with heme, essential amino acids, purines, some coenzymes, and vitamins. In return, N. esmeraldas shares with the bacterium several nonessential amino acids and phospholipids. Moreover, it complements its carbohydrate metabolism and urea cycle with enzymes missing from the "Ca. Pandoraea novymonadis" genome. The removal of the endosymbiont from N. esmeraldas results in a significant reduction of the overall translation rate, reduced expression of genes involved in lipid metabolism and mitochondrial respiratory activity, and downregulation of several aminoacyl-tRNA synthetases, enzymes involved in the synthesis of some amino acids, as well as proteins associated with autophagy. At the same time, the genes responsible for protection against reactive oxygen species and DNA repair become significantly upregulated in the aposymbiotic strain of this trypanosomatid. By knocking out a component of its flagellum, we turned N. esmeraldas into a new model trypanosomatid that is amenable to genetic manipulation using both conventional and CRISPR-Cas9-mediated approaches. IMPORTANCENovymonas esmeraldas is a parasitic flagellate of the family Trypanosomatidae representing the closest insect-restricted relative of the human pathogen Leishmania. It bears symbiotic bacteria in its cytoplasm, the relationship with which has been established relatively recently and independently from other known endosymbioses in protists. Here, using the genome analysis and comparison of transcriptomic profiles of N. esmeraldas with and without the endosymbionts, we describe a uniquely complex cooperation between both partners on the biochemical level. We demonstrate that the removal of bacteria leads to a decelerated growth of N. esmeraldas, substantial suppression of many metabolic pathways, and increased oxidative stress. Our success with the genetic transformation of this flagellate makes it a new model trypanosomatid species that can be used for the dissection of mechanisms underlying the symbiotic relationships between protists and bacteria.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Genoma Bacteriano , Simbiose/genética , Trypanosoma/metabolismo , Trypanosoma/microbiologia , Bactérias/classificação , Genômica , Filogenia , Trypanosoma/classificação
12.
Microb Genom ; 7(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34397347

RESUMO

Trypanosoma brucei evansi and T. brucei equiperdum are animal infective trypanosomes conventionally classified by their clinical disease presentation, mode of transmission, host range, kinetoplast DNA (kDNA) composition and geographical distribution. Unlike other members of the subgenus Trypanozoon, they are non-tsetse transmitted and predominantly morphologically uniform (monomorphic) in their mammalian host. Their classification as independent species or subspecies has been long debated and genomic studies have found that isolates within T. brucei evansi and T. brucei equiperdum have polyphyletic origins. Since current taxonomy does not fully acknowledge these polyphyletic relationships, we re-analysed publicly available genomic data to carefully define each clade of monomorphic trypanosome. This allowed us to identify, and account for, lineage-specific variation. We included a recently published isolate, IVM-t1, which was originally isolated from the genital mucosa of a horse with dourine and typed as T. equiperdum. Our analyses corroborate previous studies in identifying at least four distinct monomorphic T. brucei clades. We also found clear lineage-specific variation in the selection efficacy and heterozygosity of the monomorphic lineages, supporting their distinct evolutionary histories. The inferred evolutionary position of IVM-t1 suggests its reassignment to the T. brucei evansi type B clade, challenging the relationship between the Trypanozoon species, the infected host, mode of transmission and the associated pathological phenotype. The analysis of IVM-t1 also provides, to our knowledge, the first evidence of the expansion of T. brucei evansi type B, or a fifth monomorphic lineage represented by IVM-t1, outside of Africa, with important possible implications for disease diagnosis.


Assuntos
Filogenia , Trypanosoma/classificação , Trypanosoma/genética , Tripanossomíase/parasitologia , África , Animais , Cromossomos , DNA de Cinetoplasto/genética , Genótipo , Cavalos , Polimorfismo de Nucleotídeo Único , Trypanosoma/isolamento & purificação , Trypanosoma brucei brucei/classificação , Trypanosoma brucei brucei/genética , Tripanossomíase/veterinária
13.
Parasit Vectors ; 14(1): 293, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078431

RESUMO

BACKGROUND: African trypanosomiases are vector-borne diseases that affect humans and livestock in sub-Saharan Africa. Although data have been collected on tsetse fauna as well as trypanosome infections in tsetse flies and mammals in foci of sleeping sickness in Chad, the situation of tsetse fly-transmitted trypanosomes remains unknown in several tsetse-infested areas of Chad. This study was designed to fill this epidemiological knowledge gap by determining the tsetse fauna as well as the trypanosomes infecting tsetse flies in the area of Lake Iro in southeastern Chad. METHODS: Tsetse flies were trapped along the Salamat River using biconical traps. The proboscis and tsetse body were removed from each fly. DNA was extracted from the proboscis using proteinase K and phosphate buffer and from the tsetse body using Chelex 5%. Tsetse flies were identified by amplifying and sequencing the cytochrome c oxydase I gene of each tsetse fly. Trypanosome species were detected by amplifying and sequencing the internal transcribed spacer 1 of infecting trypanosomes. RESULTS: A total of 617 tsetse flies were trapped; the apparent density of flies per trap per day was 2. 6. Of the trapped flies, 359 were randomly selected for the molecular identification and for the detection of infecting trypanosomes. Glossina morsitans submorsitans (96.1%) was the dominant tsetse fly species followed by G. fuscipes fuscipes (3.1%) and G. tachinoides (0.8%). Four trypanosome species, including Trypanosoma vivax, T. simiae, T. godfreyi and T. congolense savannah, were detected. Both single infection (56.7%) and mixed infections of trypanosomes (4.6%) were detected in G. m. submorsitans. The single infection included T. simiae (20.5%), T. congolense savannah (16.43%), T. vivax (11.7%) and T. godfreyi (9.8%). The trypanosome infection rate was 61.4% in G. m. submorsitans, 72.7% in G. f. fuscipes and 66.6% in G. tachinoides. Trypanosome infections were more prevalent in tsetse bodies (40.6%) than in the proboscis (16.3%). CONCLUSION: This study revealed the presence of different tsetse species and a diversity of trypanosomes pathogenic to livestock in the area of Lake Iro. The results highlight the risks and constraints that animal African trypanosomiasis pose to livestock breeding and the importance of assessing trypanosome infections in livestock in this area.


Assuntos
Variação Genética , Trypanosoma/classificação , Trypanosoma/genética , Tripanossomíase Africana/transmissão , Moscas Tsé-Tsé/parasitologia , Animais , Chade/epidemiologia , Feminino , Lagos , Gado/parasitologia , Masculino , Trypanosoma/isolamento & purificação , Trypanosoma congolense/genética , Trypanosoma vivax/genética , Tripanossomíase Africana/epidemiologia , Moscas Tsé-Tsé/fisiologia
14.
PLoS Negl Trop Dis ; 15(6): e0009323, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34106914

RESUMO

BACKGROUND: African trypanosomes are parasites mainly transmitted by tsetse flies. They cause trypanosomiasis in humans (HAT) and animals (AAT). In Chad, HAT/AAT are endemic. This study investigates the diversity and distribution of trypanosomes in Mandoul, an isolated area where a tsetse control campaign is ongoing, and Maro, an area bordering the Central African Republic (CAR) where the control had not started. METHODS: 717 human and 540 cattle blood samples were collected, and 177 tsetse flies were caught. Trypanosomal DNA was detected using PCR targeting internal transcribed spacer 1 (ITS1) and glycosomal glyceraldehyde-3 phosphate dehydrogenase (gGAPDH), followed by amplicon sequencing. RESULTS: Trypanosomal DNA was identified in 14 human samples, 227 cattle samples, and in tsetse. Besides T. b. gambiense, T. congolense was detected in human in Maro. In Mandoul, DNA from an unknown Trypanosoma sp.-129-H was detected in a human with a history of a cured HAT infection and persisting symptoms. In cattle and tsetse samples from Maro, T. godfreyi and T. grayi were detected besides the known animal pathogens, in addition to T. theileri (in cattle) and T. simiae (in tsetse). Furthermore, in Maro, evidence for additional unknown trypanosomes was obtained in tsetse. In contrast, in the Mandoul area, only T. theileri, T. simiae, and T. vivax DNA was identified in cattle. Genetic diversity was most prominent in T. vivax and T. theileri. CONCLUSION: Tsetse control activities in Mandoul reduced the tsetse population and thus the pathogenic parasites. Nevertheless, T. theileri, T. vivax, and T. simiae are frequent in cattle suggesting transmission by other insect vectors. In contrast, in Maro, transhumance to/from Central African Republic and no tsetse control may have led to the high diversity and frequency of trypanosomes observed including HAT/AAT pathogenic species. Active HAT infections stress the need to enforce monitoring and control campaigns. Additionally, the diverse trypanosome species in humans and cattle indicate the necessity to investigate the infectivity of the unknown trypanosomes regarding their zoonotic potential. Finally, this study should be widened to other trypanosome hosts to capture the whole diversity of circulating trypanosomes.


Assuntos
Doenças dos Bovinos/parasitologia , Trypanosoma/classificação , Tripanossomíase Africana/parasitologia , Zoonoses/parasitologia , Animais , Bovinos , Doenças dos Bovinos/sangue , Doenças dos Bovinos/epidemiologia , Chade/epidemiologia , Humanos , Especificidade da Espécie , Tripanossomíase Africana/sangue , Tripanossomíase Africana/epidemiologia
15.
Parasitology ; 148(6): 703-711, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33536085

RESUMO

Toxoplasma gondii can infect almost all warm-blooded vertebrates with pathogensis being largely influenced by the host immune status. As important epidemiological hosts, rodents are globally distributed and are also commonly found infected with haemoflagellates, such as those in the genus Trypanosoma. We here address whether and how co-infection with trypanosomes can influence T. gondii infection in laboratory models. Rats of five strains, co-infected with T. lewisi and mice of four strains, co-infected with T. musculi, were found to be more or less susceptible to T. gondii infection, respectively, with corresponding increased or decreased brain cyst burdens. Downregulation of iNOS expression and decreased NO production or reverse were observed in the peritoneal macrophages of rats or mice, infected with trypanosomes, respectively. Trypanosoma lewisi and T. musculi can modulate host immune responses, either by enhancement or suppression and influence the outcome of Toxoplasma infection.


Assuntos
Toxoplasmose/complicações , Trypanosoma lewisi/fisiologia , Tripanossomíase/complicações , Animais , Western Blotting , Encéfalo/parasitologia , Modelos Animais de Doenças , Macrófagos Peritoneais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Ratos Wistar , Organismos Livres de Patógenos Específicos , Esplenomegalia , Toxoplasma/fisiologia , Toxoplasmose/epidemiologia , Trypanosoma/classificação , Trypanosoma/fisiologia , Tripanossomíase/imunologia , Tripanossomíase/parasitologia
16.
Parasit Vectors ; 14(1): 50, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446276

RESUMO

BACKGROUND: In the 1980s and 1990s, great strides were taken towards the elimination of tsetse and animal African trypanosomiasis (AAT) in Zimbabwe. However, advances in recent years have been limited. Previously freed areas have been at risk of reinvasion, and the disease in tsetse-infested areas remains a constraint to food security. As part of ongoing control activities, monitoring of tsetse and AAT is performed regularly in the main areas at risk. However, a centralized digital archive is missing. To fill this gap, a spatially explicit, national-level database of tsetse and AAT (i.e. atlas) was established through systematic data collation, harmonization and geo-referencing for the period 2000-2019. METHODS: The atlas covers an area of approximately 70,000 km2, located mostly in the at-risk areas in the north of the country. In the tsetse component, a total of 33,872 entomological records were assembled for 4894 distinct trap locations. For the AAT component, 82,051 samples (mainly dry blood smears from clinically suspicious animals) were collected at 280 diptanks and examined for trypanosomal infection by microscopy. RESULTS: Glossina pallidipes (82.7% of the total catches) and Glossina morsitans morsitans (17.3%) were the two tsetse species recorded in the north and northwest parts of the country. No fly was captured in the northeast. The distribution of AAT follows broadly that of tsetse, although sporadic AAT cases were also reported from the northeast, apparently because of transboundary animal movement. Three trypanosome species were reported, namely Trypanosoma brucei (61.7% of recorded infections), Trypanosoma congolense (28.1%) and Trypanosoma vivax (10.2%). The respective prevalences, as estimated in sentinel herds by random sampling, were 2.22, 0.43 and 0.30%, respectively. DISCUSSION: The patterns of tsetse and AAT distributions in Zimbabwe are shaped by a combination of bioclimatic factors, historical events such as the rinderpest epizootic at the turn of the twentieth century and extensive and sustained tsetse control that is aimed at progressively eliminating tsetse and trypanosomiasis from the entire country. The comprehensive dataset assembled in the atlas will improve the spatial targeting of surveillance and control activities. It will also represent a valuable tool for research, by enabling large-scale geo-spatial analyses.


Assuntos
Distribuição Animal , Trypanosoma/fisiologia , Tripanossomíase Africana/veterinária , Moscas Tsé-Tsé/parasitologia , Animais , Atlas como Assunto , Bases de Dados Factuais , Insetos Vetores/parasitologia , Gado/parasitologia , Trypanosoma/classificação , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/prevenção & controle , Zimbábue/epidemiologia
17.
Ticks Tick Borne Dis ; 12(1): 101573, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33007666

RESUMO

Specimens of a Trypanosoma sp. were found in a haemolymph sample of Rhipicephalus microplus from Argentina. Polymerase chain reaction (PCR) was done targeting the SSU rRNA gene of Trypanosoma spp. and a fragment of 2300 base pairs (bp) was amplified, subsequently a phylogenetic analysis was conducted, based on an alignment of 905 bp, containing the sequence of the Argentina isolate and sequences of different Trypanosoma species retrieved from GenBank. Phylogenetic analysis revealed that this trypanosome is not related to Trypanosoma theileri as was previously thought, instead the strain of Trypanosoma detected in this study can be provisionally determined as belonging to the recently described organism Trypanosoma rhipicephalis. Furthermore, phylogenetic analysis performed in this work revealed that T. rhipicephalis belongs to a novel clade of tick-related trypanosomes, most with limited genetic data, for which essential aspects of both the vertebrate and invertebrate life cycles are lacking. The lack of basic information restricts the inferences that can be done from the present finding and, in addition, points out a clear knowledge gap in the biology of this group of trypanosomes.


Assuntos
Rhipicephalus/parasitologia , Trypanosoma/classificação , Animais , Argentina , Feminino , Filogenia , Reação em Cadeia da Polimerase , RNA de Protozoário/análise , RNA Ribossômico/análise , Trypanosoma/genética
18.
Trends Parasitol ; 37(4): 296-303, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33309505

RESUMO

Differentiation is a central aspect of the parasite life cycle and encompasses adaptation to both host and environment. If we accept that evolution cannot anticipate an organism's needs as it enters a new environment, how do parasite differentiation pathways arise? The transition between vertebrate and insect stage African trypanosomes is probably one of the better studied and involves a cell-cycle arrested or 'stumpy' form that activates metabolic pathways advantageous to the parasite in the insect host. However, a range of stimuli and stress conditions can trigger similar changes, leading to formation of stumpy-like cellular states. We propose that the origin and optimisation of this differentiation program represents repurposing of a generic stress response to gain considerable gain-of-fitness associated with parasite transmission.


Assuntos
Evolução Biológica , Trypanosoma , Ciclo Celular/genética , Estágios do Ciclo de Vida/fisiologia , Estresse Fisiológico , Trypanosoma/classificação , Trypanosoma/genética , Trypanosoma/crescimento & desenvolvimento
19.
Braz. J. Pharm. Sci. (Online) ; 57: e18997, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1345455

RESUMO

In the present study a series of 34 synthetic ligustrazine-containing α, ß-Unsaturated carbonyl-based compounds and oximes, recognized as anticancer compounds were assessed against protozoa of the Trypanosoma and Leishmania species. Ligustrazine, chemically known as tetramethylpyrazine (TMP), was selected as the core moiety for the synthesis of α, ß-Unsaturated carbonyl-based compounds and these compounds were selected as precursors for the synthesis of new oximes. Some derivates, including 5f and 6i, showed multiple activities against all tested strains. In particular compounds 5f and 8o are the most potent and they are, therefore, potential candidates for trypanosomiasis and leishmaniasis


Assuntos
Oximas/agonistas , Cicloexanonas/agonistas , Trypanosoma/classificação , Tripanossomíase , Leishmaniose , Leishmania/classificação
20.
BMC Evol Biol ; 20(1): 161, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33297939

RESUMO

BACKGROUND: Trypanosomes are single-celled eukaryotic parasites characterised by the unique biology of their mitochondrial DNA. African livestock trypanosomes impose a major burden on agriculture across sub-Saharan Africa, but are poorly understood compared to those that cause sleeping sickness and Chagas disease in humans. Here we explore the potential of the maxicircle, a component of trypanosome mitochondrial DNA to study the evolutionary history of trypanosomes. RESULTS: We used long-read sequencing to completely assemble maxicircle mitochondrial DNA from four previously uncharacterized African trypanosomes, and leveraged these assemblies to scaffold and assemble a further 103 trypanosome maxicircle gene coding regions from published short-read data. While synteny was largely conserved, there were repeated, independent losses of Complex I genes. Comparison of pre-edited and non-edited genes revealed the impact of RNA editing on nucleotide composition, with non-edited genes approaching the limits of GC loss. African tsetse-transmitted trypanosomes showed high levels of RNA editing compared to other trypanosomes. The gene coding regions of maxicircle mitochondrial DNAs were used to construct time-resolved phylogenetic trees, revealing deep divergence events among isolates of the pathogens Trypanosoma brucei and T. congolense. CONCLUSIONS: Our data represents a new resource for experimental and evolutionary analyses of trypanosome phylogeny, molecular evolution and function. Molecular clock analyses yielded a timescale for trypanosome evolution congruent with major biogeographical events in Africa and revealed the recent emergence of Trypanosoma brucei gambiense and T. equiperdum, major human and animal pathogens.


Assuntos
Evolução Molecular , Filogenia , Trypanosoma , África , DNA Mitocondrial/genética , Trypanosoma/classificação , Trypanosoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA